If you do not find what you're looking for, you can use more accurate words.
أجرى الكيميائي الإنجليزي همفري ديفي واحدة من أولى الدراسات على حالات المادة المكثفة، في العقد الأول من القرن التاسع عشر. لاحظ ديفي أنه من بين أربعين عنصرًا كيميائيًا معروفًا في ذلك الوقت، فإن ستةً وعشرين عنصرًا له خصائص معدنية مثل اللمعان والليونة والتوصيل الكهربائي والحراري العالي. هذا يدل على أن الذرات في نظرية جون دالتون الذرية لم تكن غير قابلة للتجزئة كما ادعى دالتون، ولكن كان لها بنية داخلية. ادعى ديفي كذلك أن العناصر التي كان يُعتقد أنها غازات، مثل النيتروجين والهيدروجين، يمكن أن تتحول إلى سائلة في ظل الظروف المناسبة ثم تتصرف كفلزات.
في عام 1823، نجح مايكل فاراداي، وهو مساعد في مختبر ديفي، في تسييل الكلور واستمر في تسييل جميع العناصر الغازية المعروفة، باستثناء النيتروجين والهيدروجين والأكسجين. بعد فترة وجيزة، في عام 1869، درس الكيميائي الأيرلندي توماس أندروز مرحلة الانتقال من السائل إلى الغاز وصاغ مصطلح النقطة الحرجة لوصف الحالة التي يتعذر فيها تمييز الطور الغازي والسائلي، وزوّد الفيزيائي الهولندي يوهانس فان دير فال بالإطار النظري الذي سمح بالتنبؤ بالسلوك الحرج استنادًا إلى قياسات في درجات حرارة عالية. بحلول عام 1908، تمكن جيمس ديوار وهيكي كاميرلينغ أونز من تسييل الهيدروجين بنجاح ثم اكتشف الهيليوم على التوالي.
اقترح بول درود في عام 1900 أول نموذج نظري لإلكترون كلاسيكي يتحرك عبر مادة صلبة معدنية. وصف نموذج درود خواص المعادن على شكل غاز من الإلكترونات الحرة، وكان أول نموذج مجهري لشرح الملاحظات التجريبية مثل قانون فيدمان-فرانز. على الرغم من نجاح نموذج الإلكترون الحر لدرود، كانت لديه مشكلة واحدة ملحوظة: كان غيرَ قادرٍ على شرح المساهمة الإلكترونية في الخواص الحرارية والمغناطيسية المحددة للمعادن، والمقاومة المعتمدة على درجة الحرارة في درجات الحرارة منخفضة.
في عام 1911، بعد ثلاث سنوات من تسييل الهيليوم لأول مرة، اكتشف أونز العامل بجامعة ليدن التوصيل الفائق في الزئبق، عندما لاحظ اختفاء المقاومة الكهربائية للزئبق في درجات حرارة أقل من قيمة معينة. فاجأت هذه الظاهرة تمامًا أفضل علماء الفيزياء النظرية في ذلك الوقت، وظلت غير معروفة لعدة عقود. قال ألبرت أينشتاين، في عام 1922، فيما يتعلق بالنظريات المعاصرة عن الموصلية الفائقة إنه "من خلال جهلنا الكبير بالميكانيكا الكمومية للأنظمة المركبة، نحن بعيدون جدًا من كوننا قادرين على تكوين نظرية من هذه الأفكار المبهمة."
عزز فولفغانغ باولي، وأرنولد سومرفيلد، وفيليكس بلوش وغيرهم من علماء الفيزياء نموذج درود الكلاسيكي. أدرك باولي ان على الإلكترونات الحرة في المعدن أن تتماشى مع إحصائيات فيرمي-ديراك. باستخدام هذه الفكرة، طور نظرية المغناطيسية المسايرة في عام 1926. بعد فترة وجيزة، قام سومرفيلد بدمج إحصائيات فيرمي-ديراك في نموذج الإلكترون الحر وجعله أفضل لتفسير السعة الحرارية. بعد ذلك بعامين، استخدم بلوخ ميكانيكا الكم لوصف حركة الإلكترون في بنية دورية. استُخدمت رياضيات الهياكل البلورية التي طورها أوغست برافيس وييفغراف فيودوروف وآخرون لتصنيف البلورات على أساس مجموعة التناظر الخاصة بهم. ، وكانت جداول الهياكل البلورية الأساس لسلسلة الجداول الدولية لعلم البلورات، التي نُشرت لأول مرة في عام 1935. استخدمت حسابات بنية النطاق لأول مرة في عام 1930 للتنبؤ بخصائص المواد الجديدة، وفي عام 1947 طور جون باردين ووالتر براتين وويليام شوكلي أول ترانزستور قائم على أشباه الموصلات، مما أدى إلى ثورة في مجال الإلكترونيات.
في عام 1879، اكتشف إدوين هربرت هول، الذي يعمل في جامعة جونز هوبكنز، ظهور جهدٍ كهربائيٍ عبر الموصلات عرضيًا لتيار كهربائي في الموصل ومجال مغناطيسي متعامد مع التيار. تسمى هذه الظاهرة الناشئة بسبب طبيعة ناقلات الشحنة في الموصل تأثير هول، لكنها لم تشرح بشكل صحيح في ذلك الوقت، حيث لم يُكتشف الإلكترون تجريبياً إلا بعد 18 عامًا. بعد ظهور ميكانيكا الكم، طور ليف لانداو في عام 1930 نظرية تكميم لانداو ووضع الأساس للتفسير النظري لتأثير هول الكمومي المكتشف بعد نصف قرن.
عُرفت المغناطيسية كخاصية للمادة في الصين منذ عام 4000 قبل الميلاد. ومع ذلك، فإن الدراسات الحديثة الأولى للمغناطيسية بدأت فقط بتطوير فاراداي وماكسويل وآخرين للديناميكا الكهربائية في القرن التاسع عشر، والتي تضمنت تصنيف المواد على أنها مغناطيسية حديدية أو مغناطيسية مسايرة وشبه مغناطيسية وثنائية المغناطيسية بناءً على استجابتها للمغنطة. درس بيير كوري اعتماد المغنطة على درجة الحرارة واكتشف انتقال طور نقطة كوري في المواد المغناطيسية الحديدية. في عام 1906، قدم بيير فايس مفهوم الحُبيبة المغناطيسية أو النطاق المغناطيسي أو المنطقة المغناطيسية لشرح الخصائص الرئيسية للمغناطيسات الحديدية. كان ويلهلم لينز وإرنست إيسينغ أول من حاول وصف المغناطيسية بطريقة مجهرية من خلال نموذج إيسينغ الذي وصف المواد المغناطيسية بأنها تتكون من بنية دورية من اللفات المغزلية التي اكتسبت المغناطيسية مجتمعة. حُلّ نموذج ايسينغ لإظهار أن المغنطة العفوية لا يمكن أن تحدث في بعد واحد ولكن من الممكن حدوثها في المشابك ذات الأبعاد الأعلى. أدت المزيد من البحوث مثل بحث بلوخ على موجات اللف المغزلي وبحث نيل على المغناطيسية الحديدية المضادة إلى تطوير مواد مغناطيسية جديدة مع تطبيقات لأجهزة تخزين المغناطيسية.