اذا لم تجد ما تبحث عنه يمكنك استخدام كلمات أكثر دقة.
علم المثلثات أو حساب المثلثات (باللاتينية: Trigonometria) هو فرع من الرياضيات يدرس الزوايا والمثلثات والتوابع المثلثية كالجيب والجيب التمام. وهو أحد فروع علم الهندسة العامة.
يكون مثلثان متشابهين إذا كانت الزوايا المتقابلة من كل منهما متساوية، أي عندما ينتج أحدهما عن الآخر بتكبيره أو تصغيره. وتكون أطوال أضلاع المثلثين المتشابهين متناسبة. أي أنه إذا كان طول أقصر أضلاع المثلث الأول ضعف طول أقصر أضلاع المثلث الثاني، فإن طول كل من الضلعين الأطول والمتوسط من المثلث الأول يكون ضعف طولي الضلعين الأطول والمتوسط من المثلث الثاني أيضا، وبالتالي فإن النسبة بين طولي الضلعين الأقصر والأطول في المثلث الأول مساوية للنسبة بين طولي الضلعين الأقصر والأطول في المثلث الثاني. اعتمادا على هذه القوانين، من الممكن تعريف التوابع المثلثية، مستخدمين المثلث القائم. وهناك القانون القائل انه إذا تساوت زاويتان في مثلثين قائمين، فان هذين المثلثين متشابهان، وتكون النسبة بين الضلع المقابلة للزاويتين المتساويتين، وتر كل من المثلثين (الضلع المقابلة للزاوية القائمة) متساوية بالنسبة لكل من المثلثين وتعتمد فقط على قيمة الزاوية، وستكون عددا بين 0 و1، تدعى هذه النسبة بجيب الزاوية. بشكل مماثل، يمكن تعريف تجيب الزاوية على أنها النسبة بين الضلع المجاور لها والوتر.
الدالتان الجيب وجيب التمام هما أهم الدوال المثلثية. هناك أيضا توابع أخرى تُعرف بأخذ نسب أخرى من أضلاع المثلث القائم، أو نسب من التابعين الأساسيين الجيب وجيب التمام، هذه التوابع هي: ظل (ظا)، ظل تمام(ظتا)، قاطع (قا)، وقاطع تمام (قتا).
هناك حالة خاصة في حالة حساب جيب تمام الزاوية إذا كان 1 و0.
قانون الجيب من أجل مثلث معين ما ينص على ما يلي:
حيث هي مساحة المثلث و R هو شعاع الدائرة المحيطة بالمثلث.
قانون جيب التمام هو امتداد لمبرهنة فيتاغورس حيث تبقى هذه المبرهنة صحيحة مهما كانت طبيعة هذا المثلث على عكس مبرهنة فيتاغورس التي تكتفي بالمثلثات قائمة الزاوية. تنص هذه المبرهنة على مايلي:
صيغة أويلر بما أنها تنص على أن ، تعطي النتائج التالية: