اذا لم تجد ما تبحث عنه يمكنك استخدام كلمات أكثر دقة.
في الفيزياء الرياضية، تعامل نظرية التشتت كإطار لدراسة التفاعل أو حلول التشتت للمعادلات التفاضلية الجزئية، في علوم الصوت، المعادلة التفاضلية هي معادلة الموجة والتشتت يدرس حلولها التي تمثل موجات الصوتية، التشتت في الأجسام الصلبة أو الإنتشار في وسط مادي غير متجانس (كالصوات التي تطلقها الغواصات في مياه البحر).
بينما في حالة الكهرومغناطيسية الكلاسيكية، المعادلة التفاضلية هي أيضاً معادلة الموجة وحلولها تدرس الضوء والموجات الكهرومغناطيسية. في فيزياء الجسيمات، المعادلات تصف معادلات الديناميكا الكهربائية الكمية والديناميكا اللونية الكمية والنموذج القياسي، والتي تتوافق حلولها مع الجسيمات الأولية.
في الميكانيك الكمي الإعتيادي ومن ضمنه الكيمياء الكمية، المعادلة التفاضلية هي معادلة شرودينغر، مع صيغها المكافئة الشائعة مثل معادلة ليبمان-شوينغر ومعادلات فاديف، الحلول تصف الحركة الحرة الطويلة للذرات والجزيئات والفوتونات والإلكترونات والبروتونات، حيث يصف السيناريو عدد من الجسيمات القادمة من المالانهاية، وعند الكاشف تتصادم وتتفاعل إختيارياً ثم تدمر بعضها أو تنشيء جسيمات جديدة أخرى، وهذه النواتج مع الكواشف الغير متفاعلة تتشتت بعد التفاعل بعيداً إلى المالانهاية مجدداً، تكشف حلول المعادلات عن الإتجاهات التي من المرجح أن تسلكها نواتج هذا التفاعل ومدى سرعتها، كما تكشف عن مدى احتمالية حصول ردود الفعل، أو التخليق، أو الإضمحل، توجد تقنيتان سائدتان لحل مسائل التشتت وهما: تحليل الموجة الجزئي ، وتقريب بورن .